Sound speed in sea. Coppens equation

Mathematical definition

$$\boxed{\begin{array}{l} C\left( {T,S,D} \right) = C\left( {T,S,0} \right) + \left( {16.23 + 0.253T} \right)D + \left( {0.213 - 0.1T} \right){D^2}\\ + \left( {0.016 + 0.0002\left( {S - 35} \right)} \right)\left( {S - 35} \right)TD \end{array}}$$

Notation Definition Units Limits Conversion
$C$ sound speed $\text{m/s}$
$T$ temperature $^{\circ}\text{C}$ $-2 < T < 35$ $T\left[ {{\rm{d^\circ C}}} \right] = T\left[ {{\rm{^\circ C}}} \right] \times {10^{ - 1}}$
$S$ salinity $\text{‰}$ $0 < S < 42$
$D$ depth $\text{m}$ $0 < D < 4000$ $D\left[ {{\rm{km}}} \right] = D\left[ {\rm{m}} \right] \times {10^{ - 3}}$

$$\begin{array}{l} C\left( {T,S,0} \right) = 1449.05 + 45.7T - 5.21{T^2} + 0.23{T^3}\\ + \left( {1.333 - 0.126T + 0.009{T^2}} \right)\left( {S - 35} \right) \end{array}$$

Octave/Matlab implementation

function C = sound_speed_sea_coppens(T,S,D)
% Inputs
%   T: temperature \ degree Celsius \ -2 < T < 35 
%   S: salinity \ ppt \ 0 < S < 42
%   D: depth \ m \ 0 < D < 4000
% Outputs
%   C: speed of sound in seawater \ m/s

    d = D.*(1e-3);
    t = T.*(1e-1);

    C = 1449.05 + 45.7*t - 5.21*(t.^2) + 0.23*(t).^3 ...
        + (1.333 - 0.126*t + 0.009*(t.^2)).*(S - 35) ...
        + (16.23 + 0.253*t).*d + (0.213-0.1*t).*(d.^2) ...
        + (0.016 + 0.0002*(S-35)).*(S-35).*t.*d;
end

Computational examples

$D$\$T$ $0°\text{C}$ $10°\text{C}$ $20°\text{C}$ $30°\text{C}$ $40°\text{C}$
$10\ \text{m}$ $1442.55$ $1483.85$ $1516.03$ $1540.46$ $1558.51$
$1000\ \text{m}$ $1458.83$ $1500.21$ $1532.46$ $1556.97$ $1575.10$
$2000\ \text{m}$ $1475.70$ $1516.96$ $1549.09$ $1573.47$ $1591.48$
$5000\ \text{m}$ $1528.86$ $1568.56$ $1599.12$ $1621.93$ $1638.38$

References

  1. Coppens, Alan B, "Simple equations for the speed of sound in Neptunian waters", 1981